A domain decomposition method of stochastic PDEs: An iterative solution techniques using a two-level scalable preconditioner

نویسندگان

  • Waad Subber
  • Abhijit Sarkar
چکیده

Recent advances in high performance computing systems and sensing technologies motivate computational simulations with extremely high resolution models with capabilities to quantify uncertainties for credible numerical predictions. A two-level domain decomposition method is reported in this investigation to devise a linear solver for the large-scale system in the Galerkin spectral stochastic finite element method (SSFEM). In particular, a two-level scalable preconditioner is introduced in order to iteratively solve the largescale linear system in the intrusive SSFEM using an iterative substructuring based domain decomposition solver. The implementation of the algorithm involves solving a local problem on each subdomain that constructs the local part of the preconditioner and a coarse problem that propagates information globally among the subdomains. The numerical and parallel scalabilities of ∗Corresponding author Email addresses: [email protected] (Waad Subber), [email protected] (Abhijit Sarkar) The preliminary version of the paper is published in the proceeding of HPCS 2011 conference [1] Preprint submitted to Journal of Computational Physics August 3, 2013 the two-level preconditioner are contrasted with the previously developed one-level preconditioner for two-dimensional flow through porous media and elasticity problems with spatially varying non-Gaussian material properties. A distributed implementation of the parallel algorithm is carried out using MPI and PETSc parallel libraries. The scalabilities of the algorithm are investigated in a Linux cluster.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UN CO RR EC TE D PR O O F 1 Domain Decomposition Methods of Stochastic PDEs 2

In conjunction with modern high performance computing systems, domain decomAQ1 8 position algorithms permit simulation of PDEs with extremely high resolution nu9 merical models. Such computational models substantially reduce discretization er10 rors. In realistic simulation of certain physical systems, it is however necessary to 11 consider the heterogeneities of the model parameters. Whenever ...

متن کامل

Numerical Solution of Nonlinear PDEs by Using Two-Level Iterative Techniques and Radial Basis Functions

‎Radial basis function method has been used to handle linear and‎ ‎nonlinear equations‎. ‎The purpose of this paper is to introduce the method of RBF to‎ ‎an existing method in solving nonlinear two-level iterative‎ ‎techniques and also the method is implemented to four numerical‎ ‎examples‎. ‎The results reveal that the technique is very effective‎ ‎and simple. Th...

متن کامل

Symbolic Techniques for Domain Decomposition Methods

Some algorithmic aspects of systems of PDEs based simulations can be better clarified by means of symbolic computation techniques. This is very important since numerical simulations heavily rely on solving systems of PDEs. For the large-scale problems we deal with in today’s standard applications, it is necessary to rely on iterative Krylov methods that are scalable (i.e., weakly dependent on t...

متن کامل

Tensor-structured methods for parameter dependent and stochastic elliptic PDEs

Modern methods of tensor-product decomposition allow an efficient data-sparse approximation of functions and operators in higher dimensions [5]. The recent quantics-TT (QTT) tensor method allows to represent the multidimensional data with log-volume complexity [1, 2, 3]. We discuss the convergence rate of the Tucker, canonical and QTT stochastic collocation tensor approximations to the solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 257  شماره 

صفحات  -

تاریخ انتشار 2014